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ABSTRACT 

The use of artificial neural networks (ANN) for predicting the empennage buffet 
pressures as a function of aircraft state has been investigated. The buffet loads 
prediction method which is developed depends on experimental data to train the ANN 
algorithm and is able to expand its knowledge base with additional data. The study 
confirmed that neural networks have a great potential as a method for modelling buffet 
data. The ability of neural networks to accurately predict magnitude and spectral 
content of unsteady buffet pressures was demonstrated. Based on the ANN 
methodology investigated, a buffet prediction system can be developed to characterise 
the F/A-18 vertical tail buffet environment at different flight conditions. It will allow 
better understanding and more efficient alleviation of the empennage buffeting 
problem. 
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Prediction of Buffet Loads Using Artificial 
Neural Networks 

Executive Summary 

The F/A-18 fighter aircraft experiences random fluctuating pressures on its 
empennage surfaces caused by impingement of burst LEX vortices during critical high 
angle of attack manoeuvres. This severe buffet environment shortens structural fatigue 
life and causes premature structural failures. Accurate prediction of random pressure 
fluctuations on a vertical tail is quite difficult due to complexities in the interaction 
between the highly turbulent flow field behind burst LEX vortices and empennage 
structure in different flight regimes. Despite progress in our ability to predict the 
empennage buffet made during the last decade, more accurate and robust buffet 
prediction methods must be developed to support fleet management decisions. 

This work investigates the feasibility of using Artificial Neural Networks (ANN) for 
predicting the empennage buffet pressures as a function of flight conditions. The 
method is dependent on the availability of experimental data to train the ANN 
algorithm and is able to expand its knowledge base with additional data. Full scale 
F/A-18 tail buffet test in the 80ft X 120ft test section of the NASA Ames National 
Full-Scale Aerodynamics Complex provided the initial database for the development 
and assessment of an ANN-based buffet load prediction method. 

The study revealed that artificial neural networks have a great potential as a method 
for modelling the complex nonlinear relationships inherent in buffet data. Initial 
assessments indicated that neural networks are able to accurately predict RMS values 
and frequency content of unsteady buffet pressures. The ANNs have the ability to 
extract the essential features from many input combinations to produce an accurate 
output and generalise well for new conditions by detecting features of the inputs that 
have been learned to be significant. 

Based on the ANN methodology investigated, a buffet prediction system can be 
developed to provide detailed information about the F/A-18 vertical tail buffet 
environments through the use of additional experimental and flight test data. It will 
allow for better understanding of empennage buffeting problems and can be used in 
fatigue usage monitoring systems for fleet aircraft. Results of the work contribute to 
DSTO's existing body of knowledge on empennage buffet and can assist in the F/A-18 
International Follow On Structural Test Project (IFOSTP) fatigue test on the aft fuselage 
and empennage. 
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1. Introduction 

The unsteady pressures acting on the aircraft lifting surfaces, referred to as buffet, are 
broadband random fluctuations having predominant frequencies associated with the 
primary aerodynamic characteristics of the aircraft. Twin-tail fighter aircraft such as 
F/ A-18 have proven to be especially susceptible to empennage buffet at high angles of 
attack. The vortices emanating from the wing root leading edge extensions (LEXs) tend 
to burst producing highly energetic swirling flow, which converts downstream and 
impinges upon the vertical tails and horizontal stabilators. The turbulent airflow 
following a burst LEX vortex excites the tail surfaces and large oscillatory structural 
responses result at the low order resonant frequencies of the tail. After prolonged 
exposure to this dynamic environment, the tail structure begins to fatigue and repairs 
must be initiated. The maintenance costs and aircraft down-time associated with these 
repairs are often quite high. 

The accurate prediction of the random pressure environment on a vertical tail is 
difficult due to the complexity of the interaction between the aircraft state, burst vortex 
flowfield and empennage structure, see Mabey [1], Lee & Brown [2]. During the past 
decades, intensive theoretical and experimental investigations of the mechanism of 
leading edge vortex breakdown improved our understanding of this complex 
phenomenon. Despite some progress in the prediction of LEX vortex breakdown, the 
underlying physical process governing the breakdown and how it causes tail buffet are 
still among the most challenging fundamental research problems. 

A number of sub-scale and full-scale experiments [2 - 6] on F/A-18 tail buffet, aircraft 
flight tests [7, 8], as well as numerical predictions [9,10,11] performed so far provide 
valuable information about buffet pressure distributions, dynamic response of the 
vertical tails and some details of the flowfield in the vertical tail region. These 
experiments and flight tests form a database of dynamic load environments, which can 
be utilised in order to develop an accurate and robust buffet prediction method. 

The main objective of this study is to determine the feasibility of using Artificial Neural 
Networks (ANN) to characterise the unsteady buffet loads as a function of aircraft state 
using aerodynamic pressures measured on the twin tails of an F/A-18. The data were 
obtained from a full-scale F/A-18 tail buffet test at the NASA Ames Research Center 
where buffet pressures and the resulting structural vibrations of the vertical tails were 
obtained over a range of angles of attack and sideslip. It provided the initial 
information required for the development and assessment of an ANN-based buffet 
loads prediction method. 

This work has been done as part of an effort to develop a buffet prediction system, 
which incorporates experimental and flight test data, computational unsteady 
aerodynamics and artificial neural networks and can be used to further improve the 
service life of fleet aircraft and reduce costly post-production repairs. 
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2. Full-Scale Tail Buffet Test 

In 1991, the Aeronautical and Maritime Research Laboratory (AMRL) participated in 
tests of a full-scale F/A-18 aircraft in the 80ft X 120ft wind tunnel of the National Full- 
Scale Aerodynamic Complex at the NASA Ames Research Centre in Moffett Field, 
California. The wind tunnel test was part of NASA's High Alpha Technology Program, 
a cooperative research effort at NASA's Ames, Langley and Lewis Research Centers to 
improve the manoeuvrability of high performance military aircraft at very high angles 
of attack. It was conducted in an attempt to quantify the F/A-18 tail buffet loads and to 
provide data for use in the development of potential solutions to counter the twin tail 
buffet problem. 

The main purpose of this test was to obtain further information on the unsteady 
excitation experienced by the vertical tails at high angle of attack, using unsteady 
surface pressure measurements, and on the tail response, using acceleration 
measurements of the tail structure. Buffet pressures and the resulting structural 
vibrations of the vertical tails were obtained over a range of angles of attack and 
sideslip. The information from the NASA tests was used to augment AMRL studies on 
vortex breakdown and to help define the loading spectrum for the F/A-18 
International Follow On Structural Test Project (IFOSTP) fatigue test on aft fuselage 
and empennage. 

2.1 Wind Tunnel 

The 80ft X 120ft Wind Tunnel is part of the National Full-Scale Aerodynamic Complex 
(NFAC) located at NASA Ames Research Center. The NFAC can be configured as 
either a closed circuit wind tunnel with a 40ft X 80ft test section or an open circuit wind 
tunnel with an 80ft X 120ft test section, see Figure 1. The maximum dynamic pressure 
attainable in the 80ft X 120ft Wind Tunnel is 33 psf, providing a maximum velocity of 
approximately 100 knots. The maximum speed corresponds to a Reynolds number of 
12.3xl06 based on the F/A-18 wing's mean aerodynamic chord. 

2.2 Test Article 

Vertical tail buffet studies were conducted on a full-scale production F/A-18 fighter 
aircraft. The aircraft, supplied by the U.S. Navy, was from the first F/A-18 model A 
production block. The aircraft is 56.0 ft long and has a wingspan of 37.42 ft. The 
reference wing area is 400 ft2 and the wing's mean aerodynamic chord is 11.52 ft. The 
leading edge flaps were fixed at a 33 deg. deflection angle and trailing edge flaps were 
fixed in their undeflected position. These flap deflections match the standard control 
law schedule for angles of attack greater than 26 deg. The rudders were fixed in their 
undeflected position throughout the test. The horizontal stabilators were actuated so 
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that their position was varied with angle of attack to match the trimmed stabilator 
positions of those on the High Angle-of-attack Research Vehicle (HARV) in steady, lg 
flight conditions. The aircraft engines and avionics were removed prior to test. The 
aircraft was configured with flow-through inlets and the missile rails were left in place 
on the wing tips with no missiles attached. 

The aircraft was supported in the wind runnel test section by the three struts, as shown 
in Figure 2. Two main struts of fixed height were attached to the aircraft with two 
blade and clevis assemblies that replaced the main landing gear trunnions. The third 
strut, a large linear actuator that positioned the tail linearly to control the angle of 
attack, was connected to the aircraft by a cantilever structure attached to the engine 
mounts and to the arresting hook pivot. The three struts were mounted on a rotatable 
turntable in the floor of the wind tunnel that allowed placing the test article at various 
sideslip orientations. 

The F/A-18 was tested over an angle of attack range of 18 to 50 degrees, a sideslip 
range of -15 to 15 degrees, and at wind speeds up to 100 knots. The test conditions for 
which pressures and accelerations were available are summarised in Table 1. The 
parameters listed include the static angle of attack and angle of sideslip for each run 
along with the use of the LEX fence. Here, a positive sideslip is nose left from the pilot's 
perspective. All of the runs presented in Table 1 were conducted at a free stream 
velocity of 168 ft/s. This corresponds to a dynamic pressure of approximately 33 psf 
and a Mach number of 0.15. 

Table 1 Tail Buffet Test Conditions 

Run* LEX Fence Alpha Beta Sweep Values 
44 Off 30 Sweep 15,10, 6,4,2,0, -2, -4, -5, -10, -15 
45 Off Sweep 0 18,20,24,26,28,30,32,35,40,45,50 
46 Off 40 Sweep 15,10,6,4,2,0, -2, -4, -6, -10, -15 
47 Off 25 Sweep 15,10, 6,4,2, 0, -2, -4, -6, -10, -15 
48 Off 35 Sweep 15,10, 6,4,2, 0, -2, -4, -6, -10, -15 
53 Off 45 Sweep 15,10,5, 2,0, -2, -5, -10, -15 
54 Off 50 Sweep 15,10,5,2,0, -2, -5, -10, -15 
58 Off Sweep 0 18,20,24,26,28,30,32,34,36,38,40,42, 

44,46,48,50 
61 On 30 Sweep 15,10,5,2,0,-2,-5,-10,-15 
62 On Sweep 0 18, 20,24,26,28,30,32,35,40,45,50 
63 On 25 Sweep 15,10,5,2,0,-2,-5,-10,-15 
64 On 35 Sweep 15,10,5,2,0,-2,-5,-10,-15 
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2.3 Instrumentation 

The F/A-18 tail buffet test instrumentation consisted of 32 pressure transducers, eight 
accelerometers, six strain gauges, and a surface temperature sensor. The pressure 
transducers were mounted on the surface of the port vertical tail in a four by four 
matrix on both the inboard and outboard surfaces, as shown in Figure 3. Each vertical 
tail and each horizontal stabilator had two accelerometers mounted at their tips near 
the leading and trailing edges. The strain gages were installed on the attachment stubs 
of both vertical tails and the temperature sensor was attached to the surface of the port 
vertical tail. 

Data were sampled at a rate of 512 Hz per channel for a period of 32 seconds. To 
eliminate concerns about attenuation in pressure tubing and to simplify transducer 
installation, absolute pressure transducers, that did not have reference pressure lines, 
were installed on the tail surfaces. Transducers were mounted in fairings to minimise 
disturbances to the flow. The signals from the pressure transducers were AC coupled 
to eliminate the large DC offset due to atmospheric pressure and thereby allowed 
greater signal gain for increased resolution of the unsteady pressures measured. 

3. Data Reduction 

The F/A-18 tail buffet test data were provided to AMRL under the guidelines of The 
Technical Cooperation Program (TTCP), Technical Panel HTP-5, Manoeuvring 
Aerodynamics. It included all dynamic data from runs 44, 45, 46, 47, 48, 53, 54, 58, 61, 
62, 63 and 64, as shown in Table 1. 

The method of data reduction was chosen due to the random nature of tail buffet 
pressures. As the unsteady buffet pressures measured are assumed to be zero-mean 
and stationary random process, it was subjected to standard analysis techniques in the 
time and frequency domains. The surface pressure fluctuations were used to calculate 
root-mean-square (RMS) values and power spectral densities (PSD) of the buffet 
pressures. Differential pressure time histories were computed at each transducer-pair 
station for each test condition by subtracting the outer surface pressure reading from 
the inner surface pressure reading at each time step. Root-mean-square values and 
power spectral densities of differential pressure time histories were then obtained as 
follows. 
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3.1 Root Mean Square Values of Buffet Pressure 

The time-averaged fluctuating component P'(t) of unsteady pressure P(t,t) on the 
tail surface was found as the root-mean-square value of instantaneous buffet pressure 

P'\x) = l-\{P(x,t)-P{t))2 dt, (1) 

where r is a coordinate vector of a pressure transducer, 

P        is the mean static pressure, 
t is time. 

Note, that all the dynamic data provided to AMRL contained only the fluctuating 
component of buffet pressures. Thus, the mean static pressure computed from the 
digitised signals was essentially zero for all the transducer locations. 

The zero-mean RMS differential buffet pressure AP'(r) for each pair of pressure 
transducers at the vertical tail provides a measure of the average fluctuations of 
unsteady net pressure and was determined as 

AP'2(t) = 1-\(Pin(x,t)-Pmt(t,t))2 dt, (2) 

where Pin       is inner surface unsteady pressure, 

Pout     is outer surface unsteady pressure. 

It has been shown by Mabey [1] that unsteady buffet pressures can be effectively 
normalised with the free-stream dynamic pressure qK, allowing the elimination of the 

free-stream velocity Ux from the list of parameters. Thus, the RMS differential 
pressure coefficient for each of the transducer pairs was defined as 

CAP(t) = AP'(T)/qa, (3) 

where qK = pxUx 12 and px is free-stream air density. Using the differential pressure 
in non-dimensional form allows analysis and comparison of buffet pressure 
characteristics measured in sub-scale and full-scale experiments. 
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3.2 Power Spectral Density of Buffet Pressure 

Another important characteristic in buffet studies is the power spectral density of the 
unsteady component of the differential pressure coefficient denoted as C^,. The 
differential pressure time histories from each test condition were converted into the 
frequency domain using single-sided periodogram utilising Fast Fourier Transform 
(FFT) technique, which is a classical method of PSD estimation. 

The wing's mean aerodynamic chord was chosen as the characteristic length c for 
processing the unsteady pressure results in order to provide consistency with that used 
in previous buffet research, such as Zimmerman and Ferman [12]. 

To determine a time-averaged PSD function, the 32-second time record, which 
contained 16194 valid data points, was subdivided into records which contained 1024 
samples and were overlapped by 50%. A Harming window was applied to each record 
to reduce bandwidth leakage. PSDs were calculated for each record and averaged to 
yield a time-averaged PSD to increase statistical confidence. The variation of the PSDs 
with time for any signal was found to be quite significant and time averaging was 
required to reduce error in the PSD estimates. 

The non-dimensional form of the buffet pressure PSD was suggested by Mabey [1] and 
may be expressed in terms of the free-stream dynamic pressure as 

P'(r) 

tfoO        J 

\2        n=m In «=+oo 

=  JF(n)dn=    jnF(n)d(\nn). (4) 
n=0 lnn=-oo 

Here F(ri) is the non-dimensional power spectral density of buffet pressure fluctuations 
and is essentially a PSD of unsteady pressure coefficient C^(r) divided by the 

characteristic time scale c/Ux. 

The reduced frequency n may be expressed as the Strouhal number of differential 
pressure fluctuations 

» = A (5) 

where / is frequency of pressure fluctuations. 

Following recommendations from Mabey, the computed buffet pressure spectra plots 

were analysed and presented as ^jnF{n) versus reduced frequency n . 
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4. Modelling of Vertical Tail Buffet 

It is known that buffet data are extremely difficult to model using traditional 
regression techniques due to the multiple number of noisy parameters that interact in a 
non-linear manner, see Ferman et al. [13]. So it was suggested that Artificial Neural 
Networks (ANN) are especially adept at modelling this kind of data because their 
inter-connected algorithms can accommodate these nonlinearities, see Jacobs et al. [14]. 
One of the major features of neural networks is their ability to generalise, that is, to 
successfully classify patterns that have not been previously presented, which makes 
them a good candidate for sparse data modelling. 

4.1 Artificial Neural Network Architectures 

Artificial neural networks can be characterised as 'computational models' with 
particular properties such as the ability to adapt or learn, to generalise, and to organise 
data. The ANNs are described as massively connected networks whose operation is 
based on parallel processing. However, many of the above-mentioned properties can 
be attributed to existing non-neural models and the question exists whether the neural 
approach is better suited for a particular applications than conventional models. 

Neural networks appear unique in their ability to extract the essential features from a 
training set and use them to identify new inputs. Neural networks generalise by 
detecting features of the input pattern that have been learnt to be significant, and so 
coded into the internal units. Thus an unknown pattern is classified with others that 
share the same distinguishing features. This means that learning by example is a feasible 
approach, since only a representative set of patterns has to be taught to the network, 
and the generalisation properties will allow similar inputs to be classified as well. It also 
means that noisy inputs will be classified, by means of their similarity with the pure input. 
It is this generalisation ability that allows artificial neural networks to perform more 
successfully on real-world problems than other pattern recognition or expert system 
methods, see Krose & van der Smagt [15]. 

In general, neural networks are good at interpolation, but not so good at extrapolation. 
They are able to detect the patterns that exist in the inputs they are given, and allow for 
intermediate states that have not been seen. However, inputs that are extensions of the 
range of patterns are less well classified, since there is little with which to compare 
them. Thus, given an unseen pattern that is an intermediate mixture of two previously 
taught patterns, the net will classify it as an example of the predominant pattern. If the 
pattern does not correspond to anything the net has seen before, then prediction will be 
much poorer. 
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4.1.1 Multi-Layer Perception 

Multi-layered feed-forward networks are arguably the most popular neural network 
architecture, and certainly the trigger of the widespread explosion of activity in this area. 
This type of neural network usually has multiple processing units or nodes, with weights and 
biases as adjustable parameters. The network is arranged in several layers where nodes in 
adjacent layers are interconnected. If smoothly limiting non-linear sigmoid (S-shaped) 
transfer function 

<!>{t) = —Lzr, (6) 
1 + e 

or hyperbolic tangent are used in a multi-layer feed-forward network then this 
network architecture is often called the Multi-Layer Perception (MLP). 

This MLP network architecture is also known by the name of the algorithm used to train it, 
back error propagation (BP), see Rumelhart et al. [16]. Comparison with the desired 
response enables the weights to be altered so that the network can produce a more 
accurate output next time. This is achieved by adjusting the weights on the links 
between the units, and the training algorithm does this by calculating the value of the 
error function for that particular input, and then back-propagating the error from one 
layer to the previous one. Each unit in the net has its weights adjusted so that it reduces 
the value of the error function. 

The learning algorithm for MLP networks usually performs some variants of gradient 
descent, altering the value of each weight or bias parameter in the direction for which 
the change in that particular parameter moves the output activity patterns nearer to their 
target values. This training method can also trap the network configuration in local minima of 
the error function that stops the training process. 

Another problem inherent in feed-forward networks is overfitting, when after 
successful tiaining on a large dataset the network fails to generalise to new inputs. 
Here, the size of the network has to be chosen such that it is just powerful enough to 
provide an adequate fit. However, finding an optimal size of the network to prevent 
overfitting is a difficult task and requires extensive testing. One of the methods for 
improving network generalisation is to use an optimal regularisation technique such as 
Bayesian regularisation, see MacKay [17]. It is recognised that more complex models 
can always fit the data better, so the most likely model choice would lead to an 
implausible over-parameterised model that will generalise poorly. Bayesian methods 
embody the principle of Occam's razor [17] that states that unnecessarily complex 
models should not be preferred to simpler ones and complex models are automatically 
self-penalised under Bayes' rule. Bayesian regularisation provides a measure of how 
many network parameters are being effectively used by the network and sets the 
optimal performance function to achieve the best generalisation. 
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Although the MLP network can have an arbitrary number of layers, it is stated by the 
universal approximation theorem, that only one layer of hidden units suffices to 
approximate any function with finitely many discontinuities to arbitrary precision, 
provided the transfer functions of the hidden units are non-linear, see [18,19]. 

4.1.2 Radial Basis Functions 

An enhancement to the standard multilayer perception techniques uses what is called 
the radial basis functions. These are a set of generally non-linear functions that are built 
up into one function that can partition the pattern space. The usual multilayer 
perceptron builds its classifications from hyperplanes, whereas the radial basis 
approach uses hyperellipsoids to partition the pattern space. 

A radial basis function (RBF) network used to approximate an unknown function / 
can be described by affine mapping 

m 

/(x)«w0+£w,#,(x), (7) 

in which the m radially-symmetric basis functions (f>{ are often taken to be translated 

dilations of a prototype RBF 

MxWflx-cJ/«/,), (8) 

where c- is the centre of basis function, 

di is a scaling factor or width for the radius ||x - c ■ |, 

wi is an adjustable parameter or weight. 

Choices of ^ considered in theoretical investigations and practical applications include 

linear   (/>(r) = r,  cubic   <j){r) = r3,  thin  plate  spline   ^(r) = r2logr,  multiquadric 

(j){r) = -y/r2 +1 or Gaussian (j)(r) = e~r n functions, see [19,20]. 

The central problem in finding the solution is the placement of the centres c; and 

determination of the radial scaling factors d{ to achieve the best prediction and 
generalisation performance, see Chen et al. [20]. This problem is most often approached 
by clustering the input data points so that the centres of these clusters are then used as 
the RBF centres c,. Clustering is typically performed by a vector quantisation 

algorithm, which iteratively minimises some measure of distortion such as the 
mean-squared from each data point to the centre of the cluster to which it belongs. 
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Once the centres and widths of the basis functions are determined, each weight wi 

used in the approximation of (7) may be determined either by direct numerical 
least-squares methods such as singular value decomposition or by iterative methods 
such as an orthogonal least squares learning algorithm. Since these coefficients are 
added in a linear fashion, the problem is an exact one and has a guaranteed solution 
since there are no nasty local minima situations in which to fall. 

This approach is guaranteed to produce a function that fits all the data points, as long 
as there is a basis function for each input to be classified. Having one basis function for 
each input does mean that noisy or anomalous data points will also be classified, 
however, and these will tend to cause distortion. This noise distortion causes problems 
with generalisation and since the classification surface is not necessarily smooth, very 
similar inputs may find themselves assigned to very different classes. The solution to 
this is to reduce the number of basis functions to a level at which an acceptable fit to 
the data is still achieved. 

The use of radial basis functions is attractive, since they need only linear optimisation 
techniques, which provide a guaranteed, globally optimal solution. The difficulty in 
using them is in deciding on the set of transfer functions to be used, in order to get an 
adequate fit to the data. 

4.2 Modelling the RMS Values of Buffet Pressures 

Buffet data provided from the full-scale F/A-18 tail buffet test contained the inboard 
and outboard pressure histories as a function of free stream dynamic pressure, angle of 
attack, angle of sideslip and position of the pressure sensors. Since dynamic excitation 
of the vertical tail depends on the net contribution of unsteady loads, the buffet loading 
was described in terms of differential buffet pressures measured at each of the 
transducer pairs. As the unsteady buffet pressures can be normalised with the free- 
stream dynamic pressure, the buffet loads were reduced to differential pressure 
coefficients that allow for easy incorporation of other experimental and flight data into 
the integrated buffet database. 

Only one aircraft configuration with LEX fence off was selected for the analysis. All 
available test conditions in this configuration were examined and 73 representative test 
points with unique combinations of angles of attack and sideslip were selected to form 
a tiaining set, see Figure 4. The set of network input parameters included angle of 
attack, angle of sideslip, chordwise and spanwise locations of pressure transducer with 
RMS value of differential pressure as the network output. A total of 1168 input/output 
pairs was available for neural network tiaining and validation. Note, that one 
particular test point supposedly acquired at 50 degrees angle of attack and -10 degrees 
of angle of sideslip was not included in the tiaining set as its test conditions were not 
positively identified. This test point was used later for validation of network 
generalisation abilities. 

10 
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Two neural network architectures were initially investigated in order to assess their 
ability to model the buffet data, namely the Multi-Layer Perceptron (MLP) network 
trained with Back Propagation (BP) and the Radial Basis Function (RBF) network 
trained with an orthogonal least squares algorithm. For the case of the RBF network, an 
appropriate set of transfer functions to be used for buffet data modelling was 
determined on a sample buffet data. Several transfer functions including Gaussian, 
cubic, multiquadric and inverse multiquadric functions were assessed for function 
approximation, interpolation and extrapolation tasks. It was found that for most of the 
transfer functions evaluated, the outputs unrealistically diverged or approached zero, 
as testing inputs were placed further away from the nearest training input. Transfer 
functions with such a property cannot be used for extrapolation or even interpolation 
over long distances. 

After extensive experimentation it was concluded that an RBF network with 
multiquadric transfer functions is better suited for buffet modelling as it provides 
acceptable fit to complex functions and allows for function extrapolation. This is 
consistent with the findings of Jacobs et al. [14], who also employed multiquadric 
transfer functions for sparse buffet data modelling. An example of RBF network 
evaluation with different transfer functions for approximation and extrapolation tasks 
is presented in Figure 5 where two last data points were excluded from the tiaining set. 
As one can see, the RBF network with multiquadric functions performed well for both 
the function approximation and extrapolation while conventional Gaussian transfer 
functions showed unsatisfactory results in both tasks. 

Initially, the ability of the ANN to predict the RMS differential pressures along the 
vertical tail at various test conditions was investigated on two reduced datasets where 
one set contained only data acquired at various angles of attack and zero sideslip and 
the other included data measured at 30 degrees angle of attack and variable sideslip. 
The datasets were broken down by angle of attack into a tiaining set and a test set to 
show generalisation of the neural network to new inputs. The output RMS pressures 
were generated at a fine grid of evenly spaced points along the surface of the tail and 
then interpolated using tension splines. 

It was concluded that both the MPL and RBF networks performed reasonably well in 
estimating the pressure distribution along the tail, see Figure 6 - Figure 13. As there 
was no restriction placed on the complexity of the networks, the RBF network was able 
to fit all the data points with a specified accuracy. Thus, no test pressure distributions 
are presented here for comparison as the results generated by RBF network closely 
match the test data and can be used as a reference. 

Comparison of pressure maps generated by MPL and RBF network architectures 
shows that the results are quite similar for most of the test conditions. However, some 
inconsistency in magnitude of RMS differential pressures can be observed for moderate 
negative values of sideslip, where pressure distribution produced by the RBF network 
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appeared to better match the training data, see Figure 10. It was found that the use of 
supervised training is required to improve accuracy of MLP network predictions. 
Despite this shortfall, the MLP network still appeared to be more suitable choice for 
modelling the buffet data since it had the best training time and greater generalisation 
capability by capturing the most significant features in the training dataset. 

After showing that both of the neural networks can generalise well after training on the 
reduced datasets, the next step was to find if reasonable pressure distribution can be 
predicted at any angles of attack and sideslip over the entire test matrix. In this case, 
both the networks were presented with all the available data and allowed to train until 
the convergence of performance functions. Although the MLP showed the most 
promise for buffet modelling during initial trials, the network training on a complete 
set of data encountered serious difficulties. Numerous attempts to train MLP network 
failed to produce a satisfactory solution, as the trained network showed an 
unacceptable fit to existing data and poor generalisation. 

The use of Bayesian regularisation to optimise network parameters did not improve 
the training results as, in most of the cases, the search vector tended to settle at the local 
minimum preventing further training progress. After exhaustive testing of various 
algorithms for feed-forward network training [21, 22] it was concluded that existing 
learning methods cannot accommodate complex non-linear relations in buffet data. 
Here, the use of global optimisation techniques such as evolutionary and genetic 
algorithms combined with Bayesian regularisation may be required to determine an 
optimal set of network parameters. This is left for future studies. 

The difficulties experienced with the MLP network training prevented its further use in 
the study and only an RBF network with multiquadric functions was used in following 
investigations. 

Having established the ability of the RBF network to interpolate over the tail surface, 
pressure maps were generated for test conditions of 50 degrees angle of attack and -10 
degrees of sideslip, as this test point was originally excluded from the training set, see 
Figure 14. Comparison of computed and measured results revealed remarkable 
similarity of patterns and RMS values of differential pressure distribution allowing the 
identification of the test conditions of the suspected test point and confirming the 
prediction abilities of the network. 

To ensure that RBF network could accomplish distance interpolation, the data 
measured from the pressure transducer pair at 60% span, 45% chord location on the tail 
were removed from the tiaining set. The trained network was then tested to verify its 
ability to predict the pressures near the centre of the tail for various angles of attack 
and sideslip. 

It was found that the RBF network is able to predict the missing data reasonably well. 
As one can see from the error map in Figure 15, for most of the test conditions, the 

12 



DSTO-RR-0218 

network's predictions were fairly accurate with maximum error well below 15%. Only 
in limited regions of high angle of attack and negative sideslip did the prediction error 
reached 35% possibly due to the presence of large local pressure gradients, which 
affected the network prediction ability, especially if tiaining occurred on a coarse grid 
of pressure sensors. 

4.3 Modelling the Spectral Content of Buffet Pressures 

The next step was to assess the network's ability to predict the Power Spectral 
Density (PSD) of differential buffet pressures on the tail. Again, the test point at 50 
degrees angle of attack and -10 degrees of sideslip was selected for validation. The 
training set contained spectral characteristics of buffet pressure data for all the other 
angles of attack and sideslip in the form of PSD functions, each containing the 513 
nondimensional frequencies and their corresponding outputs (nondimensional 
pressure spectra values). The network was expected to predict power spectral densities 
of buffet pressures at any point over the tail surface at new input conditions. 

It should be noted that the average magnitude of the buffet pressure spectrum values 
can vary significantly over the frequency range, as buffet energy is concentrated in a 
relatively narrow frequency band. Because of the variation of dominant frequencies 
with test conditions and large scatter of pressure power values, it was found 
impractical to characterise the spectral content of buffet pressures in terms of the shape 
of PSD curve alone. In order to equally emphasise both the lower and higher spectral 
density magnitudes, a PSD prediction system has been developed by utilising an 
independent RBF network for each of the spectral lines and combining output from all 
of the basic networks to predict the complete PSD curve. Thus, it is assumed that the 
magnitude of power spectral density at a particular spectral line is independent of the 
rest of the spectrum. The choice of RBF architecture for each of the basic networks was 
based on its robustness and greater interpolation ability. 

The network system was developed as having four inputs (angles of attack and sideslip 
and coordinates of each pressure transducer) and 513 outputs (pressure spectrum 
magnitudes) at corresponding nondimensional frequencies. A total of 599,184 
input/output pairs formed a training set. The spectral content of the buffet pressure 
was predicted over the tail surface and comparison of predicted and measured PSD 
curves for selected locations are presented in Figure 16 - Figure 18. Note that, for 
clarity, only the most significant part of the spectrum is presented on the plots. 

As shown by the results, the neural network system is able to predict the correct shape 
of the PSD curves as well as to identify dominant frequencies in the PSD spectra. It is 
also able to follow sharp changes in the PSD curve, as may be noticed in Figure 18, 
where differential pressure data at 30% span, 90% chord location were found to be 
contaminated by a narrow-band extraneous signal. 
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Despite some discrepancy in the prediction of power pressure values, the network's 
ability to reproduce the overall trends of the PSD curves confirmed the validity of the 
adopted approach. It is anticipated that the neural network system can also be used to 
model other important buffet characteristics such as spatial correlation and frequency 
response functions between unsteady pressures on the tail, which are required for 
correct simulation of buffet loading. 

Most of the experimental buffet data obtained so far [5, 6] are measured on a finite grid 
of pressure transducers limiting our knowledge of dynamic pressure distribution on 
the rest of the tail. Numerical simulations of vertical tail buffet loading can provide 
some insight into pressure distributions in the areas where the buffet data have not yet 
been acquired, see Levinski [11]. The results of numerical simulations can be used to 
supplement the sparse experimental data allowing the ANN buffet prediction system 
to generate pressure maps over the entire tail surface. 

5. Conclusions 

The feasibility of using artificial neural networks for predicting empennage buffet 
pressures as a function of geometric conditions has been investigated. The buffet loads 
prediction method is developed which depends on experimental data to train the ANN 
algorithm and which is able to expand its knowledge base with additional data. 
Aerodynamic pressures obtained from a full-scale F/A-18 tail buffet test in the 80ft X 
120ft test section of NASA Ames National Full-Scale Aerodynamics Complex (NFAC) 
provided test bed for the development and assessment of the ANN buffet prediction 
method. 

Two network architectures have been assessed for buffet data modelling. The RBF 
network with multiquadric functions was selected based on its robustness and good 
generalisation abilities for differing input conditions. Although the MLP network 
showed the most promise during initial trials, its training on a large dataset resulted in 
an unacceptable fit to existing data and poor generalisation. The use of global 
optimisation techniques such as evolutionary and genetic algorithms combined with 
Bayesian regularisation should be investigated to determine an optimal set of network 
parameters during training. Development of a globally optimised training algorithm 
for MLP networks is left for future study. 

The study revealed that artificial neural networks have a great potential as a method 
for modelling the complex nonlinear relationships inherent in buffet data. The ability 
of neural networks to accurately predict RMS values and frequency content of 
unsteady buffet pressures was confirmed. Based on the ANN methodology 
investigated, a buffet prediction system can be developed to provide detailed 
information about the F/A-18 vertical tail buffet environment through the use of 
additional experimental and flight test data, as well as results of computational 
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unsteady aerodynamics. It will allow for better understanding of empennage buffeting 
problem and can be used in fatigue usage monitoring systems for fleet aircraft. 
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Figure 1 Schematic of National Full-Scale Aerodynamic Complex at NASA Ames Research 
Centre 
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Figure 2 Angle of attack range for test aircraft on struts 
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Figure 3 Pressure transducer locations on port vertical tail 
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Figure 6 Prediction of RMS differential pressure distribution on vertical tail at 20 degrees angle 
of attack and zero sideslip 
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Figure 8 Prediction of RMS differential pressure distribution on vertical tail at 30 degrees angle 
of attack and zero sideslip 
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Figure 9 Prediction of RMS differential pressure distribution on vertical tail at 35 degrees angle 
of attack and zero sideslip 
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Figure 10 Prediction of RMS differential pressure distribution on vertical tail at 30 degrees 
angle of attack and 4 degrees angle of sideslip 
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Figure 11 Prediction of RMS differential pressure distribution on vertical tail at 30 degrees 
angle of attack and 10 degrees angle of sideslip 
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Figure 12 Prediction of RMS differential pressure distribution on vertical tail at 30 degrees 
angle of attack and -4 degrees angle of sideslip 
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Figure 13 Prediction of RMS differential pressure distribution on vertical tail at 30 degrees 
angle of attack and -10 degrees angle of sideslip 
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Figure 14 Predicted and measured RMS differential pressure distribution on vertical tail at 
50 degrees angle of attack and -10 degrees of sideslip 
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Figure 15 RMS prediction errors at 60% span, 45% chord location on the tail 
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Figure 16 ANN predictions of pressure power density at 50 degrees angle of attack and 
-10 degrees of sideslip 
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Figure 17 ANN -predictions of pressure power density at 50 degrees angle of attack and 
-10 degrees of sideslip 
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Figure 18 ANN predictions of pressure power density at 50 degrees angle of attack and 
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